opal : List Of Minerals : The Stone Network
The Business To Business Portal For The Natural Stone Trade

Premium Black Galaxy Granite Slabs
Direct From The Factory
Ex-India

Mobile

Directory

Stone Fairs

Exhibitions 2017 Country
Exhibitions 2017 By Date

Stone Images

Granite
Limestone
Marble
Onyx
Quartzite
Sandstone
Slate
Travertine

Stone Machines

New Stone Machines
Used Stone Machines

Stone Sites

Stone Forums
Stone Magazines
Stone Portals

Stone Standards

CE Marking

Stone Supplies & Fabricators

Australia
Canada
United Kingdom
U.S.A.

Stone Testing

ASTM
BRE
Sandberg
Stats
Stone Initiatives
UKAS

Petrology

Granite
Limestone
Marble
Quartzite
Sandstone
Slate
Travertine

Rocks

Igneous
List of Minerals
List of Rocks
Metamorphic
Minerals
Sedimentary

Various Resources

A To Z Stone Names
Anti Slip
BIDA
Building Conservation
Building Design
English Heritage
Maintenance Products
Natural Stone Database
RIBA
RICS
Salvo
SPAB
Stone Federation GB
Trade Terminology

The mineraloid opal is amorphous SiO2·nH2O; hydrated silicon dioxide, the water content sometimes being as high as 20% but is usually between three and ten percent. Opal ranges from colorless through white, milky blue, gray, red, yellow, green, brown and black. Common opal is truly amorphous, but precious opal does have a structural element. The word opal comes from the Sanskrit upala, the Greek opallios, and the Latin opalus, meaning "precious stone." Opals are also Australia's National gemstone.

Opal is a mineraloid gel which is deposited at relatively low temperature and may occur in the fissures of almost any kind of rock, being most commonly found with limonite, sandstone, rhyolite, and basalt.

Opal is one of the mineraloids that can form or replace fossils. The resulting fossils, though not of any extra scientific interest, appeal to collectors.

  • Precious opal
  • Precious opal shows a variable interplay of internal colours and does have an internal structure. At the micro scale precious opal is composed of hexagonal or cubic closely packed silica spheres some 150 to 300 nm in diameter. These ordered silica spheres produce the internal colors by causing the interference and diffraction of light passing through the microstructure of opal (Klein and Hurlbut, 1985, p. 444). In addition, microfractures may be filled with secondary silica and form thin lamellae inside the opal during solidification. The term opalescence is commonly and erroneously used to describe this unique and beautiful phenomenon, which is correctly termed play of color. Contrarily, opalescence is correctly applied to the milky, turbid appearance of common or potch opal. Potch does not show a play of color.

    The veins of opal displaying the play of color are often quite thin, and this has given rise to unusual methods of preparing the stone as a gem. An opal doublet is a thin layer of colorful material, backed by a black mineral, such as ironstone, basalt or obsidian. The darker backing emphasizes the play of color, and results in a more attractive display than a lighter potch. Given the texture of opals, they can be quite difficult to polish to a reasonable lustre. The triplet cut backs the colored material with a dark backing, and then has a cap of clear quartz (rock crystal) on top, which takes a high polish, and acts as a protective layer for the comparatively delicate opal.

    Opal is symbolic of love, death, and breaking up. In the Medieval Times, the opal stone was given by a male to an unwanted female mate.

  • Common opal
  • Besides the gemstone varieties that show a play of color, there are other kinds of common opal such as the milk opal, milky bluish to greenish (which can sometimes be of gemstone quality); resin opal, honey-yellow with a resinous lustre; wood opal, caused by the replacement of the organic material in wood with opal; menilite brown or grey; hyalite, a colorless glass-clear opal sometimes called Muller's Glass; geyserite, (siliceous sinter) deposited around hot springs or geysers; and diatomite or diatomaceous earth, the accumulations of diatom shells or tests.

  • Other varieties of opal
  • Fire opal is a translucent to semi-opaque stone that is generally yellow to bright orange and sometimes nearly red and displays pleochroism at certain angles.

    Peruvian opal (also called blue opal) is a semi-opaque to opaque blue-green stone found in Peru which is often cut to include the matrix in the more opaque stones. It does not display pleochroism.

  • Sources of opal
  • Australia produces around 97% of the world’s opal. 90% is called ‘light opal’ or white and crystal opal. White makes up 60% and all the opal fields produce white opal; Crystal opal or pure hydrated silica makes up 30%; 8% is black and only 2% is boulder opal.

    The town of Coober Pedy in South Australia is a major source of opal. Another Australian town, Lightning Ridge in New South Wales, is the main source of black opal, opal containing a predominantly dark background (dark-gray to blue-black displaying the play of color). Boulder opal consists of concretions and fracture fillings in a dark siliceous ironstone matrix. It is found sporadically in western Queensland, from Kynuna in the north, to Yowah and Koroit in the south.

    Fire Opal is found mostly in Mexico and Mesoamerica. In South America, a city called Pedro II, located in Brazil, produces opal that was discovered in 1930. In Honduras there was also some fine black opal mined from volcanic ash deposits. This opal is known for its stability.

    The Virgin Valley Opal Fields Of Humboldt county in northern Nevada produce a wide variety black, crystal, white, and fire opal. Most precious opals are wood replacements. Many specimens have a high water content, and as a result, have a greater tendency to desiccate and crack than most precious opal. Discovered in 1904 the mines are still producing gem materials in large amounts to hundreds of seasonal visitors. Three Fee Dig Mines provide the public an opportunity to mine the gems themselves. The largest black opal in the Smithsonian Museum comes from these mines.

    Another source of white base opal in the United States is Spencer, Idaho. A high percentage of the opal found there occurs in thin layers. As a result, most of the production goes into the making of doublets and triplets.

  • Synthetic opal
  • As well as occurring naturally, opals of all varieties have been synthesized experimentally and commercially. The discovery of the ordered sphere structure of precious opal led to its synthesis by Pierre Gilson in 1974 (Klein and Hurlbut, 1985, p.528). The resulting material is distinguishable from natural opal by its regularity; under magnification, the patches of colour are seen to be arranged in a "lizard skin" or "chicken wire" pattern. Synthetics are further distinguished from naturals by the former's lack of fluorescence under UV light. Synthetics are also generally lower in density and are often highly porous; some may even stick to the tongue.

    Two notable producers of synthetic opal are the companies Kyocera and Inamori of Japan. Most so-called synthetics, however, are more correctly termed imitations, as they contain substances not found in natural opal (e.g., plastic stabilizers). The imitation opals seen in vintage jewellery are often "Slocum Stone" consisting of laminated glass with bits of foil interspersed.

  • Opals in popular culture
  • The opal is the official gemstone of South Australia and the Commonwealth of Australia, and the country's women's national team in basketball is nicknamed The Opals.

    Opal is the traditional birthstone of the month of October.

    The state gem stone for Nevada is precious black opal, in recognition of the black opal found in Virgin Valley, Humboldt County, Nevada.

    Trade Supplies
    Information
    Information
  • Absolute Black Granite : Black Galaxy, Star Galaxy, Nero Impala etc. Black is popular, black looks great, black is more expensive >>>
  • Black Galaxy Granite : Quarrying & Quality Information >>>
  • M.I.A. Information
    Copyright :
    Legal Information
    This web site is protected under International Law by the
    Digital Millennium Copyright Act 1998.

    If you wish to link to this site please feel free to do so HOWEVER blatant design copying, code copying and theft of bandwidth will result in legal action!

    Digg Logo ImageDigg Facebook Logo ImageFacebook Reddit Logo ImageReddit StumbleUpon Logo ImageStumbleUpon Twitter Logo ImageTwitter

    Home : Contact : About : Legal : Privacy : Cookies : Copyright 1998-2017 : The Stone Network